
This matrix is constant and of rank n. CLA and C~ 4 are also of

rank n and the observability index is 2. For the velocity formulation

= 
C 

= C 
= (3.16)

C CLA 0

For the momentum formulation

— 
0n 1n

C = = (3.17)
On

Evidently, both and C 2 have rank Zn , and they are related by

= 
~~ 

~~-l (3. 18)

as they should £23].

C. Covariance, Contravariance, and Duality

The duality between controllability and observability is si.n~lar
to the duality between covariant and contravariant tensors. Thi s
conclusion has been stated recently by Hermann and Krener in the
wider context of nonlinear differentiable systems [as] . Thi s
duality will be illustrated here only for time-variable linear systems.

Consider the linear time-varying system given by

= .~4( t )  x + c~~(t) u (3.19a)

y = C (t) x (3.l9b)
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Let ~ (t , t 0 ) be the transition matrix so that given the state at t o ,
the state at t is given as

x (t )  = ~ (t , t 0 ) [x(t O) + f  ~ (t0 ,  T )  ~~(T) u ( T ) d T]  (3. 20)

The system is controllable if and only if the rows of ~ (t 0, .)  
~~

( . )
are linearly independent functions. This condition is equivalent
to the nonsingularity of the controllability Gramian matrix [24]

t

M(t 0, t1) = ~ (t a, T)  ~~(T) p
t

(T )  ~~
t

(t T ) d T  (3. 21)

The relationship between covariance and controllability is now
brought out by the fact that M(t 0 , t1) satisfies the linear matrix
differential equation [s]

-~~ M(t , t1) = }(t)M(t , t1) + M(t , t1) , .,4t (t) — ~~ (t) q~
t

(t) (3. 22)

Ignoring C1~ , thi s equation is similar to equation (2. lOa) with M and
LA taking the roles of p. and V , respectively.

The system is observable if and only if the columns of

~ 
( ,  t o ) are linearly independent functions. This condition

is equivalent to the nonsingularity of the observability Gramian

p matrix [24]

N(t 0, t1) =f ~~
t
( I t )  C

t ( T )  C ( ~ ) ~~( T , t 0 )dT (3. 23)
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The relationship between contravariance and observability is now
brought out by the fact that N(t 0, t1) sati sfies the linear matrix
equation [5]

N (t , t1) = — LAt (t)N(t , t1) — N(t , t
1

) }(t) — C 
t (t) C (t) (3. 24)

Ignoring C ,  thi s equation is similar to equation (2 . lOb) with V and

V replacing N and LA , respectively.

D. Transformation of Input

Despite the duality between controllability and observability, it
appear s that there is a lack symmetry because V enters in cp and

~~2 (equations (3. 9) and (3. 12), respectively),  whereas V doe s not
enter into C2 and C

2 
(equations (3.16) and (3.17), respectively.

This dependence on V can be formally eliminated by redefining the

input as follows :
k’ = k - V

tg = \) (K - p. Vtg )  (3. 25a)

and

K’ = K + VG (3. 25b)

Equation (2. l7a) then becomes

g ‘n k’

= + (3.26)
4 0’ on q

In effect , the V in LA has been set to zero , and hence the V in is
also zero. Of course , the rank of is still Zn , independent of V -

— 26—
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Similarly, equation (2. l9a) becomes

G 0 0 IC  1 K’
fl n n

= + (3.27)

q 0’ °n [q

Again , in effect the V in }has been set to zero; thi s then results in
the V in I~z being set to zero , with rank of -1~~ remaining Zn.

Redefining the input variable has another important effect:

~4 and } are now bounded (since the unboundedness was due to
V) .  Consequently,  by Theorem 1 of £21 ] the nonlinear systems (3 .26)
and (3. 27) are globally controllable.

E. Perturbed Linearized System

Equations (2. 17a) and (2. 19a) are actually even controllable
when they are linearized. Linearization involve s dropping the
term in V and evaluating 0 , ~~, and V at q 0 .  More
generally, the equations can be written as these linearized terms ,
plus higher or der “perturbations” . Thus , equation (2-l7a) becomes

~1 F0n 0n~~~~~~] IV ( 0) 1K
+

q 0(0) On q

f
~~ y t On 1g1 V

~~
V (O) 1K

÷1 I 1~ 
(3. 28)

On [qJ 
O~ j

-27-

- .--- , .,.~~ . 
- 

-. - -- . - , . .—. 
-~~~~~ —



Thi s equation has the general form

x = L A x  + 
,
~~u + h (x , u) (3. 29)

with LA and ~~ being constants; h can be fur ther  expanded as

h ( x , u) = h2 (x) + h1(x)u

where h2 is quadratic (or higher)  in x and h1 is linear (or higher)  in x.
Similarly, equation (2. 19a) becomes

= [:: ::] 
{:J 

K

+ (3.30)

~~-~~~(O) O~ q

Thi s equation has the general form

= LA~~ + ~~u + h (x) (3.31)

with } and .1~ being constants , and with h being quadratic in ~~.

It is evident that the linearized parts of (3. 29) and (3. 31) are
controllable. Systems of this type are studied in £26 ] - [ 2 7 ] .  A

slightly more general perturbed system is studied in [28]. Specifi c

• studies of quadratic systems are in £2 9 ]  - [33].
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F. Nonlinear Algebraic System Theory

Loosely put , algebraic system theory is the theory of systems
in terms of the matrices LA , 

~~~, C rather than in terms of the
solutions of the system equations. In particular , the state transition
matrix doe s not appear explicitly in this theory. Much of the initial
work on algebraic system theory is due to Kalman and coworkers
[34] - [35] . The work of Silverman and Meadows [22] is also part
of algebraic system theory (for time-variable linear systems) since
it deals with controllability and observability in term s of L A ,  T~ , C
rather than in terms of the state transition matrix.

Algebraic system theory is presently still only a linear theory,
but it is conjectured that many of the results which depend only on

LA , , C can be extended to nonlinear systems like equation
(3. 3). For example , the theory of “linear algebra with continuously
parametrized elements” in [36] - [37] can probably be extended to
a theory of “linear algebra with continuous state-dependent elements”.
It is conjectured that such a theory could prove that the LA of
equation (3. 7) can be transformed so that V becomes zero:

~~V
t 

°n 0n
= (3.32)

/‘
0’ 0 0’ 0n

where is a nonsingular n x n matrix, so that the rank of the new
LA is still n. The LA of equation (3. 10) can be transformed

similarly:

0 1  [On 01
LA I ~“ I~ I (3. 33)

o l  o l
L L
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where 0’ is also a nonsingular n x n matrix so that the rank of
of the new LA is still n.

It is not really clea r whether or not a change of variables
can be found so that V is t ransformed to zero. Even if such a
transformation doe s exists , it may not be directly useable since it
may depend on knowledge of the solution of the differential equations.
However , it follows from general tensorial considerations that the
form of V can be simplified.

Recall that V depend s nonlinearly on q and linearly on g:
V = V (q, g).  If the matrix elements of V are linearly expanded

in terms of the elements of g, then the expansion coefficient s
are the components of the affine connection (for the chosen basis)[l3];

if the element s of g are holonomic velocity component s then these
coefficient s reduce to the Christoffel symbols of the second kind
for the metric matrix p. [11] . But it is known that transforming
to geodesic coordinates (or normal coordinates) [U] at the point p
yields Christoffel symbols which vanish at the point p . If q
represents the coordinates of the point p , then it follows that

V ( 0 , g )  = 0; thus , V is linear (or higher)  in q, and as a result ,
V is quadratic (or higher)  in the state .

Another interesting fact about V is that it can be transformed
so as to become skew-symmetric. Thi s is evident on examining
equations (2. la) and (2. 3a), and then transforming these equations

— —I ~~t — .:~ —,t~. #_

to C = VC + K and g = - V g + k , respectively. If
these transformations are made such that ~~ = ~ (i. e . ,  momentum
and velocity are “normalized” by the square-root of the mass) then
it follows that ~~ = - 3~, which is the condition for skew-symmetry.

In order to be sufficiently general , algebraic system theory
must be formulated in terms of manifolds rather than vector spaces
because the configuration space for a dynamical system is a manifold ,

and the state space is the tangent bundle , ~J ( j ~ ) , of this math-

fold . An interesting introduction to differentiable manifolds in nonlinear
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system theory is the review by Brockett [38] . More advanced
material is in £zs] and £~~i] - [40]

The next section casts multi-body dynamics in a nonlinear
algebraic system theory setting . The multi-body system is considered
to consist of N interconnected subsystems, and the nonlinear
equations of motion for the system are algebraically related to the
nonlinear equations of motion for the N subsystems. The inter-
connection constraints among the N subsystems are linear.
Therefore , these constraints decompose the (linear) velocity and
momentum spaces into “free ” and “constrained” parts;  these are ,
in effect , the controllable and uncontrollable subspaces. “Short
exact sequences” and “algebraic network diagrams” are used to
relate the various subspaces.
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IV. MULTI -BODY DYNAMICS

Consider a (dynamical) system which can be conveniently

considered as a collection of N interconnected subsystems. For
example , in classical dynamics it is well known [15 ] that any
mechanical system can be considered as a collection of N
particles. Each particle has three (translational) degrees of
freedom , so that the system has a total of 3N degrees of free-
dom if the interconnections do not impose any constraints. If
the interconnections impose m constraints , then there are
n = 3N - m degrees of freedom; the resulting dynamics plant is
of order Zn , having n free velocity components and n f ree  position
coordinates.

Often a mechanical system can be considered as a collection

of N ri gid bodies [1] - [4] ; each ri gid body has six degrees of
freedom (three translational and three rotational), so that the
system has 6N degrees of freedom before the application of

• constraints. After  the incorporation of m constraint s , there are
n = 6N - m degrees of freedom ; the resulting plant is , of course ,
again of orde r 2n. More generally, a mechanical system can be
considered as a collection of N deformable bodie s , with Body i
having n (1) ~ 1 degrees of freedom.

A. Primitive Composite System

Now consider a collection of N bodies , with Body i having fl (j )
degrees of freedom. The momentum formulations dynamics equations
for Body i are

0(i) = V(1)C(1) + K (1) (4. la)

g (~) = V
(i) G(j ) (4. lb)
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Here K(.)~ G(i)I and g~~ are column matrices with n(1) elements ,
and V .  and V~ are n . x n .  matrices.  The velocity

(1) (i) (i) (z)
formulation dynamics equations for Body i are

g (~) = - V~~) g (~) + “(i) K (i) (4. Za)

= 8(j ) (4. Zb)

K (i)~ C (i) , and g~~ are called the Body i force , momentum, and

velocity , respectively; V
( i )  

and 
~(i) are the Body i inverse mass

matrix and Cartan matrix, respectively.

Ignoring the constraints, the system force , momentum and

velocity are given in terms of direct sums of the corresponding

subsystem quantities , as follows :

K (1) G (1) g (1)

K (2) G (2) g (2) 
*

K = , G = , g = (4. 3a , b , c)

K (N) G (N)

Similarly, the system inverse mass matrix and Cartan matrix are

given in terms of direct sum s as follows

“(1)
V

(2)
1=  . 

. 
(4. 3d)

“(N)
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‘(1)

V(2)

V = (4. 3e)

Note that “ and V are “block-diagonal” , with the off-diagonal
blocks being zero.

When the constraints are ignored , the momentum formulation
system equations of motion are given by

G = V G + K  (4. 4a)

g = “C (4. 4b)

and the velocity formulation system equations are

g = _ V t g + VK (4. 5a)

g g  (4. 5b) *

These equations are , of course , exactly the same as equations (2. 1)
and (2. 3).

The system mass matrix is the direct sum of the subsystem
mass matrices:

p.(l)

p.(2)
(4. 6)

~ (N)



p. is the inverse of V , and hence

C = p . g  (4. 7)

as in equation (2. 2).
Let T ( .) denote the kinetic energy of Subsystem i. Then

T . and T - satisf y
(i) (1)

i t  i t  i tT (i) = 2~ 
G (i) g (1) = 

~ ~~ ~ (i) g (1) ~~~
- G~~ “ (i) G (1) (4. 8a)

T (i) = K
~i) ~(~) (4. 8b)

The kinetic energy of the system , with the constraints ignored , is
then defined by

T = ~~~~ T ( i )  (4. 9)

Thus T and T satisfy

T = .~~ Ctg = .! gt p. g = ~. G~ V C (4. lOa)

T = K~g (4. lOb)

as in equations (2. 6) and (2. 9).
When the constraints are ignored , the system is called the

primitive composite system since this system is in fact a collection
of N independent and non-interacting subsystems. The primitive
composite system is also called the “torn system ”, after Kron [41].
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The primitive composite system equations are converted to the

actual or constrained composite system equations by incorporation

of the constraint equations. But before doing this , it is of interest

to examine how the equations transform under a linear velocity

(or force)  transformation . Thi s velocity transformation can then

be selected to impose the required constraints.

B. Linear Velocity Transformation

Conside r the nonsingular linear velocity transformation

g = Aj  (4.11)

where A = A(q) depends on the position , but not on the velocity .

Let B be the inverse of A:

B = A 1 (4. 12)

Equation (4. 11) can now be inverted as follows:

= B g (4. 13)

The velocity transformation A induces momentum and force
t ransform ations by At as follows :

G = At G (4. 14)

and

K = At K (4. 15)

These are the required definitions for ~ and i~ in ordei for T and
T to have the same form in terms of both the barred and unbarred
quantities:

T = .~ G~g ~~Gt~ (4. 16)

T = K~g (4.17)
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In orde r to get

T = j~ gt p .g  = .~ ~~~~ 
~ (4. 18)

it is necessary to define

= At p . A  (4. 19)

There now results the relationship

G = (4. 20)

which has the same form as G = 
~ g

Equations (4. 14) to (4. 20) also have their inverse counterparts .
Thus ,

G = Bt G (4. 21)

K = Bt
~~ (4. 22)

and

T = -~. Gt V G  = (4. 23)

where

= B V Bt 
= 

— -l (4. 24)

Equation (4. 20) can now be inverted as

= (4. 25)

which has the same form as g = V C
The barred momentum formulation equation of motion is now

given by
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G )‘G + K (4. 26a)

where

V = At 
V Bt + At Bt (4. 26b)

The barred velocity formulation equation of motion is now
given by

= + k (4. 27a)

where

k = Bk (4. 27b)

and

= BV t A - BA (4. 27c)

Equation (4. 27c) is equivalent to (4. 26b) since

B A  = i~~—4 B A  = - B A  (4. 28a , b)

Equation (4. 27b) also has the inverse form

k = A k  (4. 29)

— — twhich is analogous to g = A g . From K = A K and K p .k  there
now follows

= ~~k 
> 

k = (4.30a , b)

It is interesting to note that all the transformation equations
have the same form as would be obtained if A (and B) were time-

• dependent rather than position dependent. Thus , the transformation

theory of linear sy stems carries over more or less directly to
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Hence

V = R. . (U - w • R .  (A.34)ic ic

It follows that
N N

- m. R • . V + m. V - R ic
1=1 i=l

N N

= -~~~~~~m. R. - ‘~
_
~c W + ~~~~~~m . R . . U ) .  IL

(A.35)

N N
( U .  R. -~~~~~~~m. W .  ~~~~~~ 

~~ic

N

= 1 -  ~~~~~~~~~~~~~~~~~~~~~ ~~~~~
. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1=1

The f irs t  term on the ri ght of equati on (A. 31) is thus given by

N
~~~ m. R . - (U - IL = .

~~ (H - I - (U - (U . I )  (A. 36)
i ic ic 2 c

i=l
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Substituting thi s into D now yields

= 
~ ~~ c + w . I + I - w t ) (A. 37)

From C = D - 3 there now follows

J + I -  . J )  (A. 38)

Since in equation (A. 28) is block diagonal it follows that in
the equation ~~ = - ~~ + R there is no coupling between the
rotational and translational equations of motion. Thus , using the
5; from equation (A. 28) now leads to the following equations of motion:

~ + L  (A.39a)c c C

—0 —t —0 — -e
w = - C - (U + J Lc (A. 39b)

Comparing equations (A. 39a) and (A. la) yield s the requirement

C = 0 (A. 40a)

—68.

- - -- --- --‘



Similarly, comparing equations (A. 39b) and (A. 5a) yields the
requirement

i .  - = - = lit . w (A.40b)

Equations (A. 40a) can easily be verified with the use of C in
equation (A . 38):

C - H =  ~~~~~~ 
~~ 

+ H~ 
j .  +

~~~ 
(~ t J H )

= ~~. ( w  - + H - w + I - - w )  (A .4l)

= 0

Note that the f i rs t  term on the right of thi s equation is the negative
of the second term ; the third term is zero since (U • (U = W ~( U) = 0.
Thus equation (A. 40a) is verified. Similarly

—t —~ 1 —t -. — ~~~~~ 
-. ~~ 0 * -.

C - w = ~. ( w  . w + ~~ - . W +  J .  U .  I .  w )

= 
[ 

- (}3~ - W + - H ) (A .42)

= y - j~ t 
-

c

Thus equation (A.40b) is also verified.

-69—

— • — -.5 - . — — _____ 
________________________________ -~

7-— ___ -0~~ • — --•
- ‘--.5 ,- ~~~~ 0 • ~ --



The relationship p. = V - + - 5;•~ yields the
requirem ent

7 =  ~~ . 7 + 7 _ ~~~t

(A. 43)
=~~~5 ÷ ~~~~t

But from equation ‘A. 37) it follows that

D + D t 
= w - I + I .  (A. 44)

The ri ght hand side of equation (A . 44) is known to be equal to I .
Tlence equation (A. 43) is also verified.

— 7 0—

- - - 
~~~0’ 

, -, _ _ _ _ _ _

- . 5 - -~~~~ - - . .--— - 
-~~~•



B. INTERCONNECTING TWO RIGID BODIES

• When a system of bodies is interconnected the primitive
system equations are obtained by simply stacking all the individual
bodies equations. Thus , for a two body system the equation
C = p. - g becomes

ci

y2
C

2

(B.l)
P M v

C
l

-2  2 -.P M v
C
2

where the off-diagonal terms of p. are zero dyadics 0. Note

that superscipts 1 and 2 are used to refer to bodies 1 and 2, and

subscripts are used to refe r to the center of mass points c1
and c2. The momentum fo rmulation equation G - V . G = K
is given by

H L

C
2 

C
2

= (B. 2)
-‘l --01
P F

~~~

— 7 i -
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and the velocity formulation equation p. - g + y t - g = K is

given by

— l -.
~~I (U C (U L

- + 

~~2t 

- =

(B. 3)

B. 1. Introduction of Relative Velocities

The above primitive sy stem equations have 12 degrees of

freedom. But in a system of two bodies it is usually convenient to

model the second body with less than 6 degrees of freedom. In
order to impose restrictions on the relative motion of the second

body it is convenient to first transform the primitive variables

and equations to new variables and equations so that the impositions

of relative motion constraints becomes simpler.

Let h2 be a point fixed in body 2 and let b2 be a point fixed

in body 1. The position vector to h2 from b2 is denoted by Rh b
-

• 1 2 2
Let Rh b be the time derivative of Rh b with respect to

2 2  2 2 .
body 1. Then the inertial time derivative Rh b can be written as

2 2
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= R h b  + ~~l x Rh b  (B• 4a)

In order to put bodies 1 and 2 on a similar footing , let h1 be a
point fixed in body 1 and let b1 be at the inertial reference f rame
origin. For convenience , this origin can be defined by an
infinitesimal body 0 with an angular velocity = 0 - Then
analogous to equation (B .4a)  there is the result

0
Rh b  = Rh b  + ;

0 
~ Rh b  (B.4b)

1 1  1 1  1 1

Now introduce the notation V 2 and V1 as follows:

-0
U = 1

~h b (B. 5a)
2 2

= = Rh b  rh = ‘Th1 
(B. 5b)

The additional equalities in equation (B. 5b) follow from (B. 4b) with
= 0 and from R h b = rh since b1 is at the inertial ori gin.

11  1
The symbol rh , of course , denotes the position vector to the point

1
h1 from the inertial origin; the inertial time derivative of rh is
vh , the linear velocity of point h1. 

1

• The relative angular velocities and are now
introduced as follows :

= ;2 
- ~~l (B. 6a)

= - ~~0 
= 

;l (B. 6b)
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The velocity transformation equation g = A - ~~
‘ now takes

the form

~~l 

1 
~j l

-

~~~

= - (B .7)
-• 

R t Ec1h1

— ~t ~ t
c2 c2h1 c 2h2

The inverse velocity transformation~~ = B . g is given by

(B.8)
-.

c1h1 c1

-~~ .—.

U -R R -E Ec1h 2 c2h 2 c2

The elements of A and B which are not shown are zero dyadics 0 -

The equation for and follow from taking the inertial time
1 2

derivatives of the equations
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~~~
-‘ h + rh (B.9a)C

1 
C 1 1  1

r = ‘~c h + ‘~h b + 1
~b h + rh (B .9b)

2 2 2  2 2  2 1  1

and then making use of the facts that 
~~ h and R b h are fixed

1 1  2 1
in body 1 whereas R

~ h 
is fixed in body 2•

2 2

B.2 . Transformed Variables and Equations

Now that the transformation operator A has been determined

the new momentum and force variable s can be determined via At .
Thus , the equation C = At 

- G yields

R h R C h  Cl

— -
~~E R H

— 

c2h 2 c2
G = A t . G =

(B . lO)
-‘-2 — 1  — ‘ZH + 1 3  + R - P + R  - P

• C
1 

C
2 

C1h1 c2h1

~~2 ~~~~
• c 2 c 2h2

~~2
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Now introduce the following notation

= + R c1h1 
- ~ l ( 11~

a)

= + 1
~c2h1 

- (B~ llb)

hl 
= + H~~ (B kllc)

= ~~~ + R - (B.~ 1d)c2h 2

= ~~l + (B. ite)

For i and j equal to 1 and 2 , ~~~ is the angular momentum of

body i about the point h. - ~ H~~ is the angular momentum ~3 1 -‘-1of the system of two bodies about the point h1, and P is the

linear momentum of the system of two bodies. Combining

equations (B. 10) and (B. 11) now yields

Hh

C = — 
(B. 12)
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The equation K = At 
- K yields similarly

-.5 -i

1

*

2
— (B.l3)

where is the torque on the system of two bodies about

h2 
is ~he torque on body 2 about h2 , is the force on the

system o~ two bodies , and F 2 is the force on body 2.
Expanding the equation p. = At - p. - A yields

1h1h2 
M ’ R 9h M 2 R h

— 
~~h2h1 

‘h2h2 
M2 

~~~~h M2 
~~~~h

p. = 
— — 

(B. 14)
M Z R t ~~ 1

c2h2

M Z Rt M Z R t ~~~2c2h2

where for i , j, k equal to 1 and 2 ,

-

~~~~~~~~~~~~~ 

*

‘ 
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= + Mi R h - R
~~•h k 

(B.l5a)
3 ij  I

= 1h1h1 
+ ‘h1h1 

(B. l5b)

= + M 2 
(B . l5c)

M 1 R = M1 R + M 2 R (B. 15d)c1h1 C1h1 c2h1

h is the inertia dyadic of the system of two bodies about the

point h1 , and is the mass dyadic for the system of two
bodies. The point c1 is the center of mass of the system of

two bodies , and R c_h is the position vector to cy from h 1 -
1 1

Expanding the equation V = B - V - Bt yields

—l 1J -J Zh ~
Zh1 2

—l 2 --- 1 l 2 -.---1-J ( J  + J ) 
~

Z h (Z h + Zh1 2 2 (B.l6)

Zh Wh h

••••2t •~ 1~ —l 2(Z h + ~ h2~ ~
Wh h  (W h h  + Wh2h2

)
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where for i , j , k equal to 1 and 2 ,

= - R~~~ (B.l7a)
3 13

W = W + 1
~c.h . - - R t

~~~ (B.17b)
3 K  1 3  1 K

There remains the evaluation of the term X = - V - G
where V = At 

- .5, - Bt + At . Bt - When the reduced form

of ~ is used (i. e., when X is expressed as X = - - G
the result is

v - P
1

vh - P
• 2

X (B.l8)
0

0

Consequently, the momentum formulation equation of motion ,
G + X = K , takes the form
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-
~~ 

-‘i -‘-1
Hh Vh 

- P L h1 1 1

-
~~ 

-‘-2 - 2
H~ v~ - P L~“2 “2 112

- — + = 
— 

(B.l9)

—- 2 -

P 0 F

Thi s result is well known since it is an immediate consequence of

the fundamental result

+ x ~~A 
= L A (B. 20a)

= ~~A (B. 20b)

-‘-A
where, given a system A and an arbitrary point a, Ha is the

angular mom entum of A about a , is the torque on A about a ,

is the linear momentum of A, and FA is the force on A;

is the linear velocity of the point a. Equation (B. 20) is used

twice in equation (B. 19): once with A = 1 and a = h1 , and once

with A = 2 and a = h2 - In the first  case system A is the system

of two bodies; in the second case system A is body 2.

Even though the result (B. 19) is well known, equations (B. 14)

for ~ and (B. 16) for V are not well known. In fact , these equations

have only been published in connection with the author’s works on

the transformation operator approach to multi-body dynamics

[3], [-4] , [53] .
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B. 3. Imposition of Constraints

Now suppose that body 2 has only a rotational degree of freedom
• - 2 .  - -relative to body 1. Then U is not a f ree  variable; i. e. , U

is som e prescribed fun cti on of time (perhaps U 2 
= 0 and the

point s h 2 and b2 start out and remain coincident). Therefore

is not a free variable either , sinc e P2 can be determined

algebraically from the remaining free  variables. Consequently
the last equation of equations (B.l9) can be removed from the set.

It is of interest to relate the free and constrained variables

via the projectors Ti ’ = A~ - B1 for i = 1 and 2. The f ree

velocity is and the constrained velocity is 
~ 2 U 2

= (B. 2l )

B1 is now determined from

-
~~~~

= ~~2 
= ..~~~ ;2 B1 

- g (B. 22a)

V 1
~c1h1 

E 
~

I
C

2

-I--, ~~~~~~~~~~~~~~~~~~~~ - • ‘ - 
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Similarly B2 is determined from

g2 = ~~2 
~ ~

R h R h -E E l  - 
;l 

= B2 - g

(B. ZZb)

Now g1 is the part of g due to g1 - Hence

= - = A1 - (B. 23a) 

- 

-

c2h1 c2h2

Similarly, g 2 is the part of g due to

~~~

g 2 = = A 2 
- g2 (B. 23b)

E
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From equations (B.23) it follows that

g’ = , where = - ~~2 (B. 24a)

and

0

0

g 2 
= (B.24b )

0

Evidently, g 2 is restricted to a 3-dimensional subspace of the

12-dimensional space which contains g.

From the above expression for A~ 
and B1 there now

follow the expression

E

E
ii 

1 
= A1 

- B1 = — (B. 25a)
.5 E

‘~c1h 2 ~~~c2h 2 
E 0
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6

2 
= A 2 - B2 = 

0 
(B. 25b)

-
~~~c,h 2 c 2h 2

Using these expressions for  the projectors , it is readily verified

that

g1 
= i T .  g (B .26a )

g
2 

= ~ 2 g (B. 26b)

Note that the subspace to which g’ is restricted is evident from the

form of the projector iT
1 

-

The f ree  force is K1 and the constraint force is K 2 - For

i = 1 and 2 , K’ is the part of K due to - K’ and K 2 are given

as follows

j 1  + ~~t 
.

c1 c1h2

- ~t 
-

1 1t 
c2 c2h2

K = r r  - K (B. 27a)
— ‘l -‘-2
F + F

0
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c

2 
c 2h 2

K = r r  - K =  (B .28b)
-~~ 2

From these expression for K’ and K 2 it is evident that K~ is

restr icted to a 9-dimensional subspace whereas  K 2 is in a
3-dimensional subspace.
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